skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O'Connor, Rory C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rapid climate change poses a fundamental challenge to seed sourcing in restoration. While local provenancing is a common practice in restoration, local seeds may not survive or persist under future climate conditions. Alternative provenancing strategies, such as climate‐adjusted provenancing, that mix local seeds with non‐local seeds aim to increase the buffering capacity of restored populations. We hypothesized that seeds sourced from warmer and drier sites have higher seedling performance under drought than seeds sourced from cooler and wetter sites. We conducted a common garden experiment in a Great Basin rangeland where more frequent, severe drought events are expected to increase in the future. We sourced Bottlebrush squirreltail (Elymus elymoides[Raf.] Swezey) seeds from six locations along an aridity gradient and sowed them under three rainfall scenarios: ambient, moderate drought, and severe drought. We found strong interannual variation in seedling recruitment. In 1 year, some provenances from warmer/drier sites had high emergence and subsequent seedling survival under moderate drought. In another, emergence was low across provenances and rainfall treatments. Two provenances that survived 2 years of moderate drought had divergent seedling traits. Specifically, one had a high germination temperature optimum and high water‐use efficiency, such that it likely avoided freezing and resisted drought, while another had a low germination temperature optimum and low water‐use efficiency, such that it likely tolerated freezing and escaped drought. We highlight that understanding these differences in recruitment and stress coping strategies across provenances is important for creating climate‐adaptive seed mixes in anticipation of future climate conditions. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract Many savannas are experiencing increased cover of trees and shrubs, resulting in reduced herbaceous productivity, shifts in savanna functional structure and potential reductions in ecotourism. Clearing woody plants has been suggested as an effective management strategy to mitigate these effects and restore these systems to an open state with higher rates of grass production and herbivory. This study investigated the effectiveness of repeated shrub clearing as a tool to mitigate bush encroachment in a semi‐arid savanna in southern Africa.We present data from a 7‐year experiment in the Mthimkhulu Game Reserve bordering Kruger National Park, South Africa.Colophospermum mopanestems and resprouting shoots were basally cut 2–3 times per year (2015–2022) in three pairs of treatment and control plots of 60 × 60 m. We monitored changes in soil moisture, grass biomass and herbivore activity via dung counts. We assessedC. mopanephysiological responses to repeated cutting using non‐structural carbohydrates and stable water isotopes to infer changes to energy storage and functional rooting depth, respectively.The cleared treatment had higher soil moisture and grass biomass than the control treatment. Dung counts showed impala and buffalo visited the cleared treatment more frequently than the control treatment.Repeated cutting had limited effects onC. mopanesurvival in the first 2–3 years after initial clearing, but 80% of individuals were dead after 7 years. Repeatedly cutC. mopanehad lower belowground starch concentrations and used water from shallower soil depths thanC. mopanein control plots.Synthesis and applications. Repeated cutting increased soil moisture availability and grass biomass, and attracted charismatic grazing herbivores. While more costly than once‐off clearing methods, this practice created more employment opportunities for a neighbouring rural community. Transforming portions of the ecosystem to a grass‐dominated state may increase ecotourism potential through improved game viewing in open systems. 
    more » « less
  3. null (Ed.)
  4. Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought. 
    more » « less